20 research outputs found

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    A Corpus-Based Evaluation of Beamforming Techniques and Phase-Based Frequency Masking

    No full text
    Beamforming is a type of audio array processing techniques used for interference reduction, sound source localization, and as pre-processing stage for audio event classification and speaker identification. The auditory scene analysis community can benefit from a systemic evaluation and comparison between different beamforming techniques. In this paper, five popular beamforming techniques are evaluated in two different acoustic environments, while varying the number of microphones, the number of interferences, and the direction-of-arrival error, by using the Acoustic Interactions for Robot Audition (AIRA) corpus and a common software framework. Additionally, a highly efficient phase-based frequency masking beamformer is also evaluated, which is shown to outperform all five techniques. Both the evaluation corpus and the beamforming implementations are freely available and provided for experiment repeatability and transparency. Raw results are also provided as a complement to this work to the reader, to facilitate an informed decision of which technique to use. Finally, the insights and tendencies observed from the evaluation results are presented

    Characterization of Deep Learning-Based Speech-Enhancement Techniques in Online Audio Processing Applications

    No full text
    Deep learning-based speech-enhancement techniques have recently been an area of growing interest, since their impressive performance can potentially benefit a wide variety of digital voice communication systems. However, such performance has been evaluated mostly in offline audio-processing scenarios (i.e., feeding the model, in one go, a complete audio recording, which may extend several seconds). It is of significant interest to evaluate and characterize the current state-of-the-art in applications that process audio online (i.e., feeding the model a sequence of segments of audio data, concatenating the results at the output end). Although evaluations and comparisons between speech-enhancement techniques have been carried out before, as far as the author knows, the work presented here is the first that evaluates the performance of such techniques in relation to their online applicability. This means that this work measures how the output signal-to-interference ratio (as a separation metric), the response time, and memory usage (as online metrics) are impacted by the input length (the size of audio segments), in addition to the amount of noise, amount and number of interferences, and amount of reverberation. Three popular models were evaluated, given their availability on public repositories and online viability, MetricGAN+, Spectral Feature Mapping with Mimic Loss, and Demucs-Denoiser. The characterization was carried out using a systematic evaluation protocol based on the Speechbrain framework. Several intuitions are presented and discussed, and some recommendations for future work are proposed

    Spectral component analysis on distorted data

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A Review on Auditory Perception for Unmanned Aerial Vehicles

    No full text
    Although a significant amount of work has been carried out for visual perception in the context of unmanned aerial vehicles (UAVs), not so much has been done regarding auditory perception. The latter can complement the observation of the environment that surrounds a UAV by providing additional information that can be used to detect, classify, and localize audio sources of interest. Motivated by the usefulness of auditory perception for UAVs, we present a literature review that discusses the audio techniques and microphone configurations reported in the literature. A categorization of techniques is proposed based on the role a UAV plays in the auditory perception (is it the one being perceived or is it the perceiver?), as well as a set of objectives that are more popularly aimed to be accomplished in the current literature (detection, classification, and localization). This literature review aims to provide a concise landscape of the most relevant works on auditory perception in the context of UAVs to date and provides insights into future avenues of research as a guide to those who are beginning to work in this field
    corecore